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The two-dimensional problem of a semi-infinite strip with the longitudinal 
sides free of stress and with various end conditions Is considered. It Is 
shown under what conditions decaying solutions of the problem exist. The 
necessity of these conditions arose with the exact formulation of the bending 
problem of a strip cl]. According to this theory, obtaining of the stress 
distributions on an end of the strip Is equivalent to the solution of the 
problem of plane deformation. 

The question of the conditions under which decaying solutions exist was 
raised by Prokopov 123. However, he applied an Insufficiently justified 
method of analogy, which, although It gave correct results in the case when 
the end IS subjected to longitudinal displacement and tangential stress, 
lead to erroneous results when applied to the case of normal stress snd 
transverse displacement at the end. 

1. We shall take the x-axis along the center line of the semi-infinite 
strip and the Y-axis along its end, and assume that the edges at u - f 1 
and the end at Infinity are free from stress. We shall consider three prob- 
lems corresponding to the following conditions at the end r T 0 

0, (0, Y) = fi (Y), $, (0, Y) = fa (Y) (problem 1) (1.1) 

2cLu (0, Y) = fl (Y),l 'cxv (0, y) = fa (y) (problem 2) (1.2) 
‘Jx (0, Y) = h (Y), Z~V (0, y) = fr Q (problem 3) (1.3) 

where w Is the shearing modulus. 

The boundary conditions at r, - f 1 for all three problems are 

oy (2, f 1) = 0, V3cy 6% It 1) = 0 (I.41 

We shall consider the cases of skew-s etrlcal and symmetrlaal deforma- 
tlons separately. In the first case yI u) and y,(Y) are odd and even F 
functions of I/ , respectively. In the second case j,(Y) Is even and y,(v) 
is odd. 

As the strip Is In equlllbrlum, then for any stress distribution at the 
end at z I 0 the following conditions must be satisfied: 
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for the skew-symmetric deformation 

c ox (0, Y) Y dY = 0, 
b 

(bxy 0% Y) 44 = 0 
b 

for the symmetric deformation 

(1.5) 

1 

c (J, (0, Y) dy = 0 (I.8 
b 

Consequently, the stresses at the end ;c I 0 are statically equivalent 
to zero, IrrespectlveJy, whether their distributions are km-m or not. 
According to the Saint-Venant's principle the stresses are decaying in the 
r-direction In all three problems. It remains to show what conditions must 
be satisfied by the end distributions so that the displacements are also 
decaying. 

2. Let the solution for the two-dimensional problem be expressed in 
terms of the blharmonlc Airy function 

00 

CD (2, y) = 2 ake-uk” F, (y) (2.1) 
k=l 

where F,(y) Is the Papkovich function [3] satisfying the fourth order dlf- 
ferentlal equation 

F,” (:/I + 2”k2 F,” (y) -+ uk4 Fk (y) = 0 

and the boundary conditions 

pk(f 1) = 0, Fk'(& 1) = 0 

For the case of skew-symmetric deformations in (2.1 
have to be considered. These have the form 

(2.2) 

(2.3) 

, odd functions F*(y) 

Fk (y) = uk cos u&n Uky - sky cos uky sin UK (2.4) 

where uL are the roots of Equation 

sin 2u - 2u= 0 (2.5) 

In the case of symmetric deformations, F,(y) are even functions of the 
form 

F, (y) = tLk sin ak cos uky - uky sin Uky cos uk (2.6) 

where u* are the roots of Equation 

sin 2u + 2u = 0 (2.7) 

Equation (2.1) Is summed over the roots of Equation (2.5) (or (2.7)), the 
real parts of which are positive. The functions F,(V) satisfy the general- 
ized orthogonallty conditions introduced by Papkovlch 

1 

[Fk# (y) k-8” (9) - Uk2 ~8’ F, (Y) Fs (Y)] dy = 0 (k # 4 
0 

The stresses corresponding to the stress function (2.1) have the form 
00 

0, = 2 lake--"k\‘Fk"(y), 
X=1 

01/ = i akuk2 ,+kx F, (y) 
k=l 

TX” = i UkUkt?-ukx Fk' (y) 

k=l 
(2.9) 

Using the Love's method [4] we obtain the expressions for the displacements 
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co 

pu= 2 fgUkX 

k=l 

Fk” (Y) + OukFk (Y)] + 
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UO (2.10) 

03 

2pv= 2 akt?-Ukr - (1 - a) $z F; (p) - (2 - 0) Fk’ (Y) -k vo 1 
+=1 

where o 1s Poisson's ratio. The quantities U, and u are linear func- 
tions of the coordinates and represent displacements of 
body. 

(the strip as a rigid 
For the case of skew-symmetric deformations we must take 

I40 = - ay, 

ad for symmetric deformations 

v, = az+ b (2.11) 

Ug = c, v, = 0 (2.12) 

As mentioned above, the series (2.9) and (2.10) are summed over the roots 
of Equations (2.5) and (2.7 

t 
the real parts of which are positive. There- 

fore the stresses given by 2.9) are of decaying chai*acter. 
(2.10) are free of the terms ug and uD , 

If Expressions 
then the displacements are also 

of ddcaylng character. 

We shall consider the first problem corresponding to the boundary 
coniitlons (1.1). For the full solution of the problem It Is necessary to 
obtain the values of a, . The question of the.exlstence of decaying solu- 
tions can, however, be answered without the knowledge of the coefficients aL. 

In this problem no conditions were Imposed on 
are determined with accuracy up to displacements 
an absolutely rigid body. If such displacements 
ufJ- vg= O, then the resulting solutions for the 
In the x-direction. 

In this manner, the conditions 
1 1 

s 
fl (Y) Y dY &= 0, s 

fr (Y) dy 
0 0 

for the skew-symmetric deform&tlon, and 

1 

s 
fl (Y) dy = 0 

the displacements; they 
of the strip considered as 
are not admitted, I.e. 
displacements are decaying 

= 0 (3.1) 

(3.2) 
0 

for the synrmetrlc deformation are necessary and sufficient conditions for 
the existence of decaying solutions of the fl?st problem. 

4. We shall now consider the second problem corresondlng to boundary 
conditions (1.2). We shall treat first the case of skew-symmetric deforma- 
tion. From 1.5) we obtain one condition which must be satisfied by the 
function j, v) t 1 

s 
fz (Y) (lY = 0 (4.0 

0 

From conditions (1.2), taking Into consideration (2.9) and (2.10), we 
have 03 

2 c 

1 
ak - 1 - aY = f~ (Y) 

k=l 
(I - a) q Fk” (Y) + aukFk(Y) 

cm 

2 ak“kFk’ (Y) = fn (Y) (4.2) 

Introducing notation 
k=l 

cpL(C.4) = jG-@Y) -&j h(Y)* '#a (Y) = i fr (Y) dy 
0 

(4.3) 
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Equations (4.2) are transformed Into 

5 ak $ Fk” (?/) + +oam, = $1 (?i), ; Q”kFk (Y) = ‘$3 (!I) (4.4) 
k=l k=1 

A Plication of the generalized orthogonality conditions (2.8) to Equation 
(4.47 all ow for the coefficients cL to be determined. Accordingly we obtain 

1 
1 

Ok = xuk8 sid uk s [Fk” (Y) ‘bt (Y) -%’ Fk (Y) ‘t’s (Y)] dy 
0 

(4.5) 

The constant s can also be determined from (4.4). This Is done by mul- 
tiplying the first relationship by Y and Integrating it with respect to y 
from ,U = 0 to Y = 1 . Remembering that 

1 

s 
Fk" (Y)Y dY = 0 

0 
we have 1 

1 

3il_c)~ = s t%(y)ydy 
0 

Substituting for $,(Y) , and integrating by parts we obtain 

.1 
a=- 3 

[S 

1 

h(.y)y dy ++~hWdy 1 (4.6) 
0 0 

It was noted above that If in (2.10) the quantities u and 
then the solutions for the displacements are decaying; %n the &~a%%% 
consideration no conditions were imposed on u(xr?/). Consequently, It is 
necessary to set PO= 0 . 

The value of c is given by (4.6). If the condition 

(4.7) 
0 IJ 

Is satisfied, then a vanishes and from (2.11) it follows that uc= 0. 

Therefore, if condition (4.7) is satisfied the displacements for this 
problem are of decaying character. 

Condition (4.7) can be established In another manner. We assume that the 
solution corresponding to the boundary conditions 
decaying. 

Y,(Y) and yz(Y) are 
Then it is necessary to set the quantities u0 and uc in (2.10) 

and a In (4.2) are equal to zero. We shall find the conditions which must 
be satisfied by the mutually Independent functions J,(K) and f,(Y) so that 
the representations (4.2) are simultaneously valid in t e region 0 C Y < 1 
(with c = 0) . 

The possibility of similar developments for two functions (*) for one 

*) Note that In the paper [5] in the development of the conditions ensuring 
the possibility of ex ansions 
of the Integral (2.16 P 

(1.7) an error is commited in the evaluation 
; the pole of first order at the point ;( = 0 was 

not taken into account. Correcting for this error we obtain lnstaed of(2.21) 

lim An = 2 If1 (Y) - fl (I) + (1 -Y) fl' (0) + l/a (1 - y2) (L (1) - II' @))I 
7I-SO 

and instead of (2.24) 

v, (Y) = fi (Y) - fl (1) + (1 -Y) fl' (0) + 'is (1 - Y2) (11' (1) - I1 ’ (0)) 
In order that the sum of the series 

to satisfy the conditions: fl(l) = 0, 
v,(Y) equals -P,(y) it Is sufficient 

fl’ (0) = 0, fl’ (1) = 0. 
In the paper [5] only the first two conditions were given, the second of 

which is automatically satisfied by an-even continuous function with conti- 
nuous first derivative over the interval (- l,+ 1). 
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particular case was investigated by Grlnberg [5]. We shall develop a slmilal 
procedure for the problem at hand. 

The quantities z(~ are the roots of Equation (2.5) with positive real 
parts. In the complex plane u , Equatlon_(2.5) has an Infinite plurality 
of quartets of simple complex roots, uk, +' - uk, - I+ (k = i, 2, . . .) and 
roots of third order u = 0 . 

Taking into account the fact that In series constituting (4.2), the sum 
of terms based on roots with positive real part equals the sum of roots with 
negative real parts, we shall extend the summation in (4.2) over all obtaln- 
able nonzero roots of Equation (2.5) and multiply the sums by a coefficient 
of j? . We shall also replace the second of Equations (4.2) by one lntegra- 
ted with respect to y from 0 to y . 

This results in the following equations 

4n 

lim S 2 ak 
c 
-(I -6 t F," (Y) it auka Fk (Y) 

I = fl (Y) n+m 
k=l 

lim $ 5 akukFk (y) = % (y 
7+X0 

k=l 

(4% 

Where different roots of Equation (2.5) are identified by different sub- 
script value, We shall elaborate now on the conditions which must be satis- 
fied by the functions r,(v) and f,( ) In order that the expansions (4.8 
can exist simultaneously. We denote 'CI he left-hand parts of E uatlons 

B( ), respective@. 'Substituting for c, from ? 
(4. 8 ) 

by A ) and 4.5) and b(Y) 
from .3) we K ob aln expressions for A(y) and J?(V) in the form 

A (Y) = Tr, (‘) (~1 - T,, (‘) (Y) - j& Tf, @) (Y) 
1 

- l--a Ttx (() (Y) - 

- UT+>) (Y 1 + T+,@) (Y 1 d- & TJ,, (‘) (Y) ~,j& T+,(‘) (Y) 

B (Y) = +-, (- Tf,(‘) (Y) + Tfr) (Y) + UT+;) (Y) - T,,,'4'(~N 

(4.9) 

where 4n 

T,(l) (Y) = Em 2 4uko s:nd u 

1 

=-,+l 
10 (x) Fk* (x) Fk*(y)dx 

k 0 

of 

4n 1 

T,@) (Y) =lim 2 4uk4 Sin4 Uk ia (2) Uk2Fk (*I Fk* (Y) dx (4.10) 
n-C0 k=I 0 

4n 

T,@) (Y) = h 2 4uk4 sf,u4 u 

1 

so (x) uka Fk+ (x) Fk(y) dx 
k. 

Ttit4) (Y) = h 2 huk4 ~i,I u 

1 

n- k=l 
5 0 (z) UK4 Fk (2) Fk (y) dx 

ko 

Where W(X) Is an arbitrary odd function 

Fk* (z) = Fk” (x) f uk2 F, (x) = 2ukz sin uk sin uky (4.11) 

We shall consider the evaluation of T, (‘j(y). Rearrangement of the order 
terms gives 

T,(l) (y) = ,hn_ i o (x) 5 xys;*;; dx (4.12) 
0 k=l 

Denoting the sum under the Integral by C,(x,y) and Introducing the 
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function Cp (2) = sin 22 - 22. where q'(z) = - 4sine z. 
Ft*(x) and am* from (4;ll) we obtain 

and substituting for 

Gl (GY) = - 
In 4 sin uky sin ulrx 

2 
k=l 

q' bk) 

Consider the line Integral 

J,, (I, y) = - & 1 
R, 

4 sin;;z;n zx dz 

(4.13) 

evaluated along a clrcie of radius A with Its center at the origin of coor- 
dinates a . The radius .R, 
encloses 4n 

Is selec?ed in such a way that the circle 
complex roots of Equation cp(z) = 0 with the condition that 

differences between I), and lu,.l and )u,~+~ 1 are finite. When computing 
the residues of T ti) (Y) (i = 
ference between A: 
(s - 1, 2, . ..) 

2,3,4) It Is necess;;; zo_a;syethat the dlf- 
and the roots of Equation 

are also finite. 
. . 2,‘STI 

The Integral (4.14) Is equal to the sum of all rosldues of the lntegrand 
at the singular points. The singular points of the lntegrand coincide with 
the roots of the function cp(a) 
tion ~(a) has 

Within the circle of radius R, the func- 
4n simple roots l z I u and one third order root z = 0. 

Correspondingly, ~,(x,y) Is equal to the sum of the residues of the lnte- 
grand at the simple poles z = uh (k = 1, 2,..., 
thjrd order pole at , - 0. 

4n) and the residue at the 
But the sum of the residues at the simple poles 

Is C,,(x,Y) and that for the third order pole , = 0 Is 3~ . In this 
manner we obtain 

Jn (xv Y) = C, (z,Y) + 32~ (4.15) 

When I),-+ m , with 06 zd 1, 06~ < 1, It follows from Jordan's Lemma 
that J,,(x,~) tends uniformly to zero with x . 

From (4.15) It follows that 

lim C, (x,y) = - YxY 
n-+co 

where C (x,Y) tends to Its llmltlng value for n _ m , uniformly with x 
for cons?ant values of Y . Therefore, for a 

$ 
function W(X) absolutely 

Integrable over the Interval 06 x< 1 from ( .12) we have 

T 0 (I) (!,I = -- 3~s 01 (r) z dx (4.16) 

0 

We shall not consider the evaluation of T W(Y) (i = 2. 3,4) In detail. 
It can be done In basically the same manner a: for T (l)(y). It Is only neces- 
sary for the rearrangement of the (orders of summatlo; to 
gratlon by parts (once In the case of T,,,@‘(y) 

carry out the lnte- 
and twice for 

T,@) (Y), 
and T (3)(y) 

and take into account the residues arlslngWfrom the poles 
(8 = 1, 2, 3,...), 

El= 87 
and corresponding to the roots of Equation sin d = 0 . 

The final results are 

To(') (y) = Tmc3) (y) = T,(*) (y) = - w (x) 

From (4.9), (4.16)and (4.17) it follows that 

(4.17) 

A (y) = - 3~ [s’ fi (x) * dl: + %cSf. (z) x2 dJ: + fi (Y) ] 
0 0 

13 (Y) = $2 (Y) 

But A(V) and E(Y) are equal to the left-hand sides of Equations (4.8), 
from which It follows that If the functions f,(Y) and ,7,(Y) satisfy 

P 
re- 

vlouely established condltlona (4.7) then the series In Equations (4.8 
represent the functions f,( ) and t,(Y) for O<y < 1. This proves that If 
the functions f,(Y) and fg a/) of the second problem (1.2) with skew-symmet- ! 
rlc deformations satisfy conditions (4.1) and (4.7), then there exist 
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decaying solutions of the problem. Conditions (4.1) arise from equilibrium 
requirements and (4.7) Is the condition which must be satisfied In order that 
the solution be representable In terms of series of Papkovlch functions In 
the class of decaying functions. 

We shall note that for all remaining cases the conditions for exlstp?ce 
of decaying solutions shall be derived using both methods employed above. 
We shall agree, however, to lean more on the first simple method, which is 
base-l on the determination of boundary conditions for the nondecaying compo- 
nenta of the expressions for the displacements and equating them to zero. 

We shall now consider the symmetrical deformation of the strip under con- 
ditions (1.2). 

Equilibrium conditions (1.6) do not Impose any conditions on the function 
f(v) and ~~(a/) . 
the boundary 

T&l Into account Equations (2.9), (2.10) and (2.12), 
conditions 1.2) give 

- (1 -u) .L 
uk Fk” (Y) + oukFk (Y) 3 f c = fi (Y) 

cd 

2 akUkFk’ (Y) = h.(Y) (4.18) 
k=l 

where F~(v) are the even Papkovlch functions (2.6). The properties of Pap- 
kovlch functions allow for the deter&nation of the coefficients 
(k - 1, 2,... ) and the quantity c from the system (4.18). Howeve?for our 
purpose It Is sufficient to determine only the quantity c . 

Integrating with respect to y the first of (4.18) and the second of 
(4.18) premultlplled by y , over the Interval 0 to 1 , one readily 
obtains 

1 1 

c= fi(~W~-h-f,(~)yd~ s s 
0 0 

From (4.19) and (2.12) It follows, that If the condition 

(4.19) 

(4.20) 

0 0 

Is satisfied, then the quantity c , and consequently u0 , vanish. 
Therefore If the functions r,(v) and f (y) In the second problem with 

symmetrical deformations satisfy condition 94.20), there exist decaying 
solutions 6f the problem. 

We shall now consider the third problem corresponding to the boundary 
In the case of skew-symmetric deformation the equilibrium 

Impose one condition on the funct:Lon ,7,(u) . It has the 
form 

1 

s 
fl (Y) Y dy = 0 

0 

From the boqdary conditions (1.3) It follows that 
Co 

2 c#k" (Y) = fl(.v) 
k=l 

0.7 

x [ 
ak - (2 

k=l 

- 0) Fk' (Y) - (1 - ‘J) + 

The quantlt 
3 

b Is determined from (5.2). 
Equations (5.2 with rsespect to t/ (the first 
second by $) over the Interval 0 to 1. 

F,“’ (Y) I + b = fi (Y) 

For this purpose we Integrate 
premultlplled by J? and the 
From the results, it Is easy 

(5.1) 

(5.2) 
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to obtain 

b = + 

1 

fi (y) Y’ dy + 3 fi (Y) (1 - y2) dy c 
0 0” 

If the condition 
1 !I 

(2 - 0) h(y)ysdy+3\f,(y)(1-y?dy=O c (5.3) 
6 ii 

is satisfied then b- 0 . No conditions can be imposed on the displacement 
U(O,Y) * It Is necessary, therefore, to set +,c 0 , i.e. a = 0 . Then it 
follows from (2.11) that uO- 0 . 

This shows that In the third problem (1.3) with skew-symmetric deforma- 
tion If the functions f,(v) and Ye satisfy the conditions (5.1) and 
(5.31 th en decaying solutions exist. 

We shall now consider the symmetrical deformations with the boundary con- 
ditions (1.3). 

From equilibrium conditions (1.6) we obtain the condition to be satisfied 
by Y,(Y) I 

(5.4) 

No condltlons were imposed on ~(0, g) in this case. It is, therefore 
necessary to set I 0 in (2.10) Therefore in the third problem (1.31 
with symmetric defsmations If condition (5.4)'j.s 
41 (z/) , then the problem has decaying solutions. 

Imposed on the function 
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