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The two-~dimensional problem of & semi-infinite strip with the longitudinal
sldes free of stress and with various end conditions is considered. It is
shown under what condltions decaying solutions of the problem exist. The
necessity of these conditions arose with the exact formulatlon of the bending
problem of a strip [1]. According to this theory, obtaining of the stress
distributions on an end of the strip 1s equivalent to the solution of the
problem of plane deformation.

The question of the conditlions under which decaying solutions exist was
raised by Prokopov [2]. However, he applied an insufficliently Justified
method of analogy, which, although 1t gave correct results in the case when
the end is subjected to longitudinal displacement and tangential stress,
lead to erroneous results when applied to the case of normal stress and
transverse dlsplacement at the end.

l, We shall take the y-axis along the center line of the seml-infinite
strip and the y-axlis along 1ts end, and assume that the edges at vy = + 1
and the end at infinity are free from stress. We shall consider three prob-
lems corresponding to the following conditions at the end x = O

0, (0,9) = L @), Ty (0, ) = f3 (v) (prodlem 1) (1.1)
208 (0,y) =/, W),] Ty (0, %) = fo (y) (problem 2) (1.2)
0. (0, y) = f, (W), 2uv (0, y) = fo () (prodblem 3) 1.3

where pu 1s the shearing modulus,
The boundary conditions at y = + 1 for all three problems are

Oy(z, £1) =0, vl £1)=0 (1.4)

We shall consider the cases of skew-s etrical and symmetrical deforma-
tions separately. 1In the first case g, (y) and y,(y) are odd and even

functions of y , respectively. In the second case g, (y) 1s even and z,(y)
is odd.

As the strip 1s in equilibrium, then for any stress distribution at the
end at x = O the following conditions must be satisfied:
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for the skew-symmetric deformation
1 1
Qox 0, 9 ydy =0, K'Txy 0,y dy=0 (1.5)
0 0
for the symmetric deformation
1
gox O, 9)dy=0 (1.8)
0
Consequently, the stresses at the end x = O are statically equivalent
to zero, irrespectively, whether thelr distributions are ¥nown or not,
According to the Saint-Venant's principle the stresses are decaying in the
x-direction in all three problems. It remains to show what conditions must

be satlsfied by the end distributions so that the displacements are also
decaying.

2. Let the solution for the two-dimenslonal problem be expressed in
terms of the blharmonic Airy functilon
o0

D(z,y) = 2 age K Fy (3) (2.1)
k=1

where Fx(y) is the Papkovich functlon [ 3] satisfying the fourth order dif-
ferential equation

PV )+ 202 By @) - wt F () = 0 2.2)
and the boundary conditions
Feo1) =0 F/ (E1)=0 2.3

For the case of skew-symmetric deformations in (2.1), odd functilons 7, (y)
have to be consldered. These have the form

Fr y) = uy cos wsin ugy — ugy cos ugy sin uy, (2.4)
where u, are the roots of Equatlon
sin 2u — 2u = 0 (2.5)

In the case of symmetric deformations, F,(y) are even functilons of the

form . .
Fp () = uy sin uy €08 ugy — uyly sin ugy cos uy (2.6)

where 1y, are the roots of Equation
sin 2u 4+ 2u =0 (2.7)
Equation (2.1) is summed over the roots of Equation (2.5) (or (2.7)), the

real parts of which are positive. The functions Fk(y) satisfy the general-
1zed orthogonality conditions Introduced by Papkovich

1

S LFx" @) £s" () — wi® us® Fy (9) F3 @) dy = 0 (k=) (2.8)
0
The stresses corresponding to the stress function (2.1) have the form
N I
__ 1 U, N ” . _
Oy = Z laxke * Fy” (), o, = Z apu? e U, X Frly)
k=1 k=1
jee]
1 —U,x ’
Ty = D) aguge K Fy () (2.9)
k=1

Using the Love's method [4] we obtaln the expressions for the displacements
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b -u 1
2pu= D\ aye "x[— (1 —0) = F" @) + ouxFi W] + uo (2.10)
k=1
- —u,x 1 . ,
o= axe ¥ [* (1 —0) 237" @) — (2 —0) Fy (y)] + v,
k=1

where ¢ 1s Polsson's ratio. The quantities u, and v, are linear func-
tions of the coordlnates and represent displacements of %he strip as a rigid
body. For the case of skew-symmetric deformations we must take

Uy = — ay, Vo= az + b (2.11)
and for symmetric deformations
uy = ¢, ve=0 (2.12)

As mentioned above, the series (2,9) and (2.10) are summed over the roots
of Equations (2.5) and (2.7%, the real parts of which are positive. There-
fore the stresses given by (2.9) are of decaying character. If Expressions
(2.10) are free of the terms U, and v, , then the displacements are also
of decaylng character.

3. We shall consider the first problem corresponding to the boundary
conditions (1.1). For the full solution of the problem it 1is necessary to
obtaln the values of g, . The question of the exlstence of decaying solu-
tions can, however, be answered without the knowledge of the coeffilclents g, .

In thls problem no conditions were imposed on the displacements; they
are determined with accuracy up to displacements of the strip considered as
an absolutely rigld body. If such displacements are not admitted, 1.e.

Up= Uy= O , then the resulting solutions for the dlsplacements are decaying
in the x-direction.

In thils manner, the condlitions

1 1
\hwyay =0  {nway=o 3.9
0 Q
for the skew-symmetric deformetion, and
1

Sh W dy =20 (3.2
[\]

for the symmetric deformation are necessary and sufficlent conditilons for
the existence of decaylng solutions of the fiqst problem.

4., We shall now consider the second problem corresonding to boundary
conditions (1.2). We shall treat first the case c¢f skew-symmetric deforma-
tion. From (1.5) we obtain one condition which must be satisfied by the
function r,(y) 1

sz dy=0 (4.1)
0

From conditions (1.2), taking into consideration (2.9) and (2.10), we
have 00

1
o [~ 4 —0) 5 P @) + o) — ey = h @)

k=1 o

> axuFy’ (v) = f2 () (4.2)

k=
Introducing notatlon 1

1 v
W) =Tt W) — T h®, e = )
[}
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Equations (4.2) are transformed into

Doaa P @ + 7oy =) D) ek () = () (4.4)
k=1 k=1

Agplication of the generalized orthogonality conditions (2.8) to Equation
(4.4) allow for the coefficients a, to be determined. Accordingly we obtaln

1
1 ”
ok = Sram a3 K @) 0 @)~ Fi 9% ()] dy 4.5
0
The constant g can also be determined from (4.4). This is done by mul-

tiplying the first relationshlp by y and integrating it with respect to y
from y =0 to y =1 . Remembering that
1

SFk" ydy=0
)
we have 1 1
3(1l—0) ™ SN’;(Z‘I)!] ay
0
Substituting for §,(y) , and integrating by parts we obtain
1

. 1
[+]
a=— 3[8 hwydy + —2-8 v y? dy] (4.5)
0 0

It was noted above that if in (2.10) the quantities y, and v, vanish,
then the solutions for the displacements are decaying. &n the case under
consideration no conditions were imposed on v{x,y). Consequently, it is
necessary to set u,=0 .

The value of g 1is given by (4.6). If the condition
1 1

]
Viwvay+ 5 Snervray =0 &)
0 0
is satisfied, then a vanishes and from (2.11) it follows that y,= O.

Therefore, A1f condition (4.,7) is satisfled the displacements for this
problem are of decaylng character.

Condition (%.7) can be established in another manner. We assume that the
solution corresponding to the boundary conditions p, (y) and r,(y) are
decaying. Then it 1s necessary to set the quantities u, and v, 1n (2.10)
and g in (4.2) are equal to zero. We shall find the conditions which must
be satisfied by the mutually independent functions g, (y) and g,{(y) so that
%he represengations (4.2) are simultaneously valid in tge reglon 0 y< 1

with ¢ = 0) .

The possibility of similar developments for two functions (*) for one

*) Note that in the paper [5] in the development of the conditions ensuring
the possibility of expansions (1.7) an error is commlted in the evaluation
of the integral (2.16); the pole of first order at the point 2 = O was
not taken into account. Correcting for this error we obtaln instaed of {2.21)

limAn =21, () — L)+ L =) /(O + Y1 —y) (L' (1) — /" (0)]

and instead of (2.2W)
Vi) =hH@ — L+ 1 —y) 0+ Y1 —vyY) ' () — f,7(0)

In order that the sum of the series v, (y) equals 7 (y) 1t 1s sufficient
to satisfy the conditions: f, (1) =0, f (0) =0, f," (1) = 0.

In the paper [5] only the first two condltions were given, the second of
which 1s automatically satlsfied by an.even continuous function with conti-
nuous first derivative over the interval (— 1,+ 1).
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particular case was investigated by Grinberg [5]. We shall develop a simila:
procedure for the problem at hand.

The quantities 1y, are the roots of Equation (2.5) with positive real
parts, In the complex plane vy , Equation_(2.5) has an infinite plurality
of quartets of simple complex roots, , U, —_— U, —u k=1,2,...) and
roots of third order u = O . K Tk ko k

Taking into account the fact that in series constituting (4.2), the sum
of terms based on roots with positive real part equals the sum of roots with
negative real parts, we shall extend the summation in (4.2) over all obtain-
able nonzero roots o6f Equatlon (2.5) and multiply the sums by a coefficient

of % . We shall also replace the second of Equations (4.2) by one integra-
ted with respect to y from O to y .

This results in the following equations

t & 1
lim 5 N o[~ —0) 5= F @) + 0w B ) | = 1 @) (4.8
k=1

n—>00

an
1
lim 5 Z apuFy (y) = P (y

R T gy

Where different roots of Equation (2.5) are identified by different sub-
script value, We shall elaborate now on the conditions which must be satis-
fied by the functions g, (y) and p,(y) in order that the expansions (4.8&
can exlst simultaneously. We denote the left-hand parts of Equatlons (4.8)
by 4(y) and B(y), respectively. *Substituting for a, from ?4.5)' and ,(y)
from 11{.3) we obgain expressions for A(y) and pB(y) in the form

1 1
AW =T,0) 7,20 — 7T, W - =7, » —

1
— 0T, 0 ) + T, (4) + 75 T, ® @) =73 T, ) 4.9)

1
B@) = 17— 72w +7,9 @ $ o7, P () —T,, 9 y)

where n 1 1
1 — 13 - -
T, (y) = lim kgl TSt %m (2) F* (2) Fi*(v)de
4in 1 1
T,® (y) = lim 3 mk—gm (8) u,2F, (5) F\* (¥) dz (4.10)
k=1 0
in 1 1
Tm(a) (y) = lim Z m S(o (=) w2 F.* (2) F(y) de
N-Op=1 0
m 1 1
@ () = It N
T W = lim 3 s §m (=) w Fy (@) Fy (9) da

Where w(x) 1s an arbitrary odd function
F . *(2) = F." (z) + w?® Fy (z) = 2u,? sin uy sin iy (4.11)
We shall consider the evaluatlon of Tu,(l) (y). Rearrangement of the order

of terms gilves 1 ~
Fy* (x) Fi* (y)

7,0 ) =lim (o @ X} “prgmey— d= (4.12)
n-—->00 b k=1 k Up

Denoting the sum under the integral by ¢, (x,y) and introducing the
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function @ (z) =sin 2z — 2z. where ¢'(s) = — 4sin? z. and substituting for
Fe*(x) and p,*(y) from (%.11) we obtain
“n ;
4 sin u, ¥ sin u x
—_ k77 k™
Cn(my) == 3 — 5y (4.13)
k=1
Consider the line integral
1 4 sin zy sin zz
In(z,y) = — 5 S ———dz (4.14)
2ni A, P (z)

evaluated along a circlie of radius A&, with its center at the origin of coor-
dinates 2z . The radius R, 1s selected in such a way that the circle
encloses U4n complex roots of Equation o(z) = 0 with the condition that
differences between R, and |u,,| and |us,., ] are finite. When computing
the residues of Tw“) (y) i=2,3, 4 1t 18 necessary to assume that the dif-
ference between R, and the roots of Equation sin 2 = 0 1l.e. 2z, = gm

s =1, 2, ...) are also finite.

The integral (4.14) is equal to the sum of all rcsidues of the integrand
at the singular points. The singular points of the integrand colncilde with
the roots of the function o¢(g) . Within the circle of radius R, the func-
tion o(#) has Un simple roots g = y, and one third order root 2z = O.
Correspondingly, Jn(x,y) 1s equal to %he sum of the residues of the inte-
grand at the simple poles z==uy (k=1,2,..., 4n) and the residue at the
third order pole at g = O. But the sum of the residues at the simple poles
is ¢,{(x,y) and that for the third order pole g = 0 1s 3xy . In this

manner we obtain
In (z,y) = Cq (z,y) $ 32y (4.15)
Ry~ = , with 0< e <4, 0y <1, 1t follows from Jordah's Lemma

When
that J,(x,y) tends uniformly to zero with x .
From (4,15) it follows that

lim Gy (z,y) = — 32y
n->c0

where (,(x,y) tends to its limiting value for g = » , uniformly with x
for constant values of y - Therefore, for a function w(x) absolutely
integrable over the interval 0 z<{1 from (4.12) we nave

1
TP (y) = — BySm (z)  dz (4.16)

0
We shall not consider the evaluation of Tu,(l) (y) (i = 2. 3,4) in detail.
It can be done 1n baslcally the same manner as for Tm(l) (y). It 1is only neces-
sary for the rearrangement of the orders of summation to carry out the inte-
gration by parts {once in the case of Tmm (y) and Tm“” (y) and twice for
T @ (), and take into account the residues arising from the poles z,= am
1,

(s"’- 2, 3,...), and corresponding to the roots of Equation sin z = 0 .
The final results are
T2 W) =7, =T,Y% = —0 (2 (417)
From (4.9), (4.16)and (4.17) 1t follows that

1 1
am == [{h@ izt hslf@ i)+ 1w
] 0

B (y) =¥ (v)

But A4(y) and p(y) are equal to the left-hand sides of Equatlons (4.8),
from which it follows that if the functions gz, (y) end 7,(y) satisfy S)re-
viously established conditiong (4.7) then the serles in Equations (¥.8
represent the functions g, (y) and y¢,(y) for 0y < 1. This proves that if
the functions f, (y) end fgfy) of the second problem (1.2) with skew-symmet-
ric deformations satisfy conditions (4.1) and (4.7), then there exilst
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decaying solutions of the problem. Conditions (4.1) arise from equilibrium
requirements and (4.7) is the condition which must be satisfied in order that
the solution be representable in terms of series of Papkovich functions in
the class of decaying functions.

We shall note that for all remalning cases the conditions for existence
of decaying solutions shall be derived using both methods employed above.
We shall agree, however, to lean more on the first simple method, which is
basel on the determlination of boundary conditions for the nondecaylng compo-
nents of the expressions for the displacements and equating them to zero,

We shall now consider the symmetrical deformatlon of the strip under con-
ditions (1.2).

Equilibrium conditions (1.6) do not impose any conditions on the function
fily) and p,(y) . Taking into account Equations (2.9), (2.10) and (2.12),
the boundary conditions {1.2) give

S 1
kZ ak[_ (1—o0) U Fy" (y) + ou,F, (y)] Fe=f(y)
=1
D agweFr @) = fa (y) (4.18)
k=1

where F,(y) are the even Papkovich functions (2.6). The properties of Pap-
kovich functions allow for the determination of the coefficlents a,

(x =1, 2,...) and the quantity o from the system (4.18). However for our
purpose it is suffielient to determlne only the quantity o .

Integrating with respect to y the first of (4.18) and the second of
(4.18) premultiplied by y , over the interval O to 1 , one readily
obtains

1 1
=@ dy+o 1, @) yay (4.19)
0 0
From (4.19) and {2.12) 1t follows, that if the conditilon
! :
\hway+ oy = (4.20)
o 0

is satisfled, then the quantity . , and consequently vy, , vanilsh.

Therefore 1f the functions g, (y) and g.(y) in the second problem with
symmetrical deformations satisfy condition 24.20), there exist decaying
solutions &6f the problem.

5. We shall now consider the third problem corresponding to the houndary
conditions 21.3;. In the case of skew-symmetric deformation the equilibrium

conditions (1.5) impose one condition on the functlon f,(p) . It has the
form
1

Sfl Wydy=20 (5.1)
0
From the boundary conditions (1.3) it follows that
[o0)

P a@Fy @) = )

- k=1 1
Z ay [— 2C—0o)F/ (y—-(1—0 ;k‘é F (!l)jl + b= f,(y) (5.2)
k=1

The quantity » 1is determined from (5.2). For this purpose we integrate
Equations (5.2) with respect to y (the first premultiplied by 2 and the
second by 1) over the interval 0 to 1 . From the results, 1t 1s easy
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to obtain
1 1 1
b=?[(2—°)gf1(y)y’dy+ 38&(1/)(1 — % dy]
0 [ :
If the condition
1 "
e—o{rwya+3{nea—ya=o (5.3)
0 0
1s satisfied then o= 0 . No conditions can be imposed on the displacement

u{0,y) . It 1is necessary, therefore, to set Up= 0 , 1.e. a =0 . Then 1t
follows fram (2.11) that v, O .,

This shows that in the third problem (1.3) with skew-symmetric deforma-
tion, if the functions #, (y) and 7,(y) satisfy the conditions (5.1) and
(5.33 then decaying solutions exist.

We shall now consider the symmetrical deformations with the boundary con=-
ditions (1.3).

Fro? §quilibr1um conditions (1.6) we obtain the condition to be satilsfied
by £ ly

fily)dy =0 (5.4)

T

No conditions were imposed on u(0, y) in this case. It 1s, therefore
necessary to set y,= O 1in (2.10). Therefore, in the third problem (1.35
with symmetric deformations if condition (5.%) is imposed on the function
7: (y) , then the problem has decaying solutions.
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